
The two algorithms for classification nearest means and naive bayes are based on the mean of
the data. We will move away from this and enter more general classification algorithms. Instead
of relying upon means we will write classification algorithms that are based upon a linear
boundary between two classes.

Geometry of a linear classifier

A linear boundary in two dimensional space is just a line. For example in the figure below the
blue line is a linear classifier.

How do we represent this line in algebra? The line is determined by a vector that we call w and
is perpendicular to the line. The vector w determines the orientation of the line.

We have another quantity called w0 that determines the distance of the line to the origin. The
exact distance of the line to the origin is in fact w0/||w||.

For every point x on the blue line (which is our boundary) we have . For every𝑤𝑇𝑥 + 𝑤
0

= 0

point x to the “left” side of the blue line we have and for every point x to the “right”𝑤𝑇𝑥 + 𝑤
0

< 0

side of the blue line we have .𝑤𝑇𝑥 + 𝑤
0

> 0

For proof of this see the slides in our google drive called “hyperplanes_as_classifiers.ppt”.

It turns out that nearest means and naive bayes are both also linear classifiers. Again see the
above slides for proof.

Least squares objective

We know that the output of a linear classifier is where y’ is either negative or𝑦' = 𝑤𝑇𝑥 + 𝑤
0

positive. The classifier itself is determined by the vector w and the number w0. For nearest
means and naive bayes we know what w and w0 are. Are these the best values of w and w0?
Are there some other values that would give a better classifier?

To better understand the problem consider the hyperplanes in the figure below. We have three
lines below and each of them are given by (u,u0) (green), (v,v0) (red), and (w,w0) (blue). If we
are given just these three choices how do we evaluate which of them are the best?

Let us write out the data for the above example so that we have specific numbers to work with.

X Y
(1, 1) -1
(1, 2) -1
(2, 1) -1
(2, 2) -1
(5, 5) 1
(5, 6) 1
(6, 5) 1
(6, 6) 1

Let us estimate the vectors from the above diagram.

w=(1, 1)
v=(.5, 1)
u=(.2, 1)

After normalizing (which means divide the vector coordinates by the vector Euclidean length) we
get

w = (= (.71, .71), w0 = -51/ 2, 1/ 2)
v = (= (.45, .9), v0= -2. 5/ 1. 25, 1/ 1. 25)
u = (=(.2, .98), u0= -3.5. 2/ 1. 04, 1/ 1. 04)

Now we have the data and each of our hyperplanes fully specified. In order to evaluate which of
these is the best we will use the least squares function. In least squares consider the squared
difference between each datapoint’s prediction and its true label. Let us determine the prediction
of each datapoint in our example above.

HOMEWORK: please finish this table and sum all row values in the bottom. We expect to see
the sum in column (wTx+w0-y)2 to be lowest, followed by (uTx+u0-y)2and then (vTx+v0-y)2. This
means that we can use this sum as a way to evaluate which hyperplane to use for classification.

Jake Nhan ->

Wai Lun ->
X Y wTx+w0 (wTx+w0-y)2 vTx+v0 (vTx+v0-y)2 uTx+u0 (uTx+u0-y)2

(1, 1) -1 -3.6 6.76 -.65 .12 -2.32 1.74
(1, 2) -1 -2.9 3.61 .25 1.56 -1.34 .12
(2, 1) -1 -2.9 3.61 -.2 .64 -2.12 1.25
(2, 2) -1 -2.2 1.44 .7 2.89 -1.14 .02
(5, 5) 1 2.1 1.21 4.75 14.06 2.4 1.96
(5, 6) 1 2.8 3.24 5.65 21.62 3.38 5.66
(6, 5) 1 2.8 3.24 5.2 17.64 2.6 2.56
(6, 6) 1 3.5 6.25 6.1 26.01 3.58 6.66
Sums: -0.4 29.36 21.8 84.54 5.04 19.96

In our training data we have a label y for each x. Our goal is that the prediction matches the true

label. How do we achieve this? We want the output to be close in value to the true𝑤𝑇𝑥 + 𝑤
0

label y. We can express that with the objective . Why do we have a𝑎𝑟𝑔𝑚𝑖𝑛
𝑤,𝑤

0

(𝑤𝑇𝑥 + 𝑤

0
− 𝑦)2

square in this objective? We want the minimum value to be 0 and so we square the objective.

We can achieve a zero minimum by taking the absolute value. We will see a little later that by
taking the square we will be able to solve our problem much more easily than if we were to take
the absolute value.

If we are given training data then we can write(𝑥
𝑖
, 𝑦

𝑖
), 𝑥

𝑖
∈ 𝑅𝑚, 𝑦

𝑖
∈ {+ 1, − 1}, 𝑖 = 0... 𝑛 − 1

the above objective as:

𝑎𝑟𝑔𝑚𝑖𝑛
𝑤,𝑤

0 𝑖=0

𝑛−1

∑ (𝑤𝑇𝑥
𝑖

+ 𝑤
0

− 𝑦
𝑖
)2

More formally the expression for a single datapoint is called the loss of .(𝑤𝑇𝑥
𝑖

+ 𝑤
0

− 𝑦
𝑖
)2 𝑥

𝑖
𝑥

𝑖

And the total sum loss of all datapoints is called the empirical risk. Most
𝑖=0

𝑛−1

∑ (𝑤𝑇𝑥
𝑖

+ 𝑤
0

− 𝑦
𝑖
)2

of machine learning and AI is entirely to find the model parameters that minimize the empirical
risk.

How do we solve the above optimization problem? We use basic calculus.

Gradient descent

Consider a function f(w). How do we find w such that f(w) is minimum? Suppose your function is

. Before determining the minimum value of f(w) we want to know𝑓(𝑤) = (𝑤𝑇𝑥 + 𝑤
0

− 𝑦)2

how many such values.

Convexity How many values of w exist where f(w) is minimum? Or how many minimum
points does f(w) have? This is known as the convexity of a function. A convex function is one
where f(w) has just one unique minimum value. See our examples below. A function f(w) is
convex if and only if (iff) the second derivative of f(w) w.r.t. is always non-negative. For our

function the first derivative and the𝑓(𝑤) = (𝑤𝑇𝑥 + 𝑤
0

− 𝑦)2 𝑑𝑓/𝑑𝑤 = 2(𝑤𝑇𝑥 + 𝑤
0

− 𝑦)𝑥

second derivative Therefore our least squares loss is convex.𝑑2𝑓/𝑑𝑤2 = 2𝑥2 >= 0.

Vector derivative The above example was for one dimensional data where both all
variables are just numbers. If we have two dimensional then w is also two dimensional. In that
case what is df/dw? The derivative of a vector is just the derivative of each component of the
vector 𝑑𝑓/𝑑𝑤 = (𝑑𝑓/𝑑𝑤

1
, 𝑑𝑓/𝑑𝑤

2
).

For two dimensional data we can write our loss as

Now we can clearly define𝑓(𝑤, 𝑤
0
, 𝑥, 𝑦) = (𝑤𝑇𝑥 + 𝑤

0
− 𝑦)2 = (𝑤

1
𝑥

1
+ 𝑤

2
𝑥

2
+ 𝑤

0
− 𝑦)2.

the derivative.

We can use the derivative df/dw to find the minimum value of f(w) with the gradient descent
algorithm. The gradient of a function is defined as a vector of first derivatives. For∇𝑓

𝑤
(𝑤, 𝑤

0
, 𝑥, 𝑦)

our two dimensional example 𝑓(𝑤, 𝑤
0
, 𝑥, 𝑦) = (𝑤𝑇𝑥 + 𝑤

0
− 𝑦)2 = (𝑤

1
𝑥

1
+ 𝑤

2
𝑥

2
+ 𝑤

0
− 𝑦)2

the gradient vector is defined as . According to Calculus the∇𝑓
𝑤

(𝑤, 𝑤
0
, 𝑥, 𝑦) = (𝑑𝑓/𝑑𝑤

1
, 𝑑𝑓/𝑑𝑤

2
)

gradient of a function gives us a vector of maximum increase of the function. In other words if
we move our variables in the direction of the gradient then our function will increase. So for
example suppose we did . Then .𝑤' = 𝑤 + ∇𝑓

𝑤
(𝑤, 𝑤

0
, 𝑥, 𝑦) 𝑓(𝑤', 𝑤

0
, 𝑥, 𝑦) > 𝑓(𝑤, 𝑤

0
, 𝑥, 𝑦)

Let us first sketch the algorithm below:

Input: (𝑥
𝑖
, 𝑦

𝑖
), 𝑥

𝑖
∈ 𝑅𝑚, 𝑦

𝑖
∈ {+ 1, − 1}, 𝑖 = 0... 𝑛 − 1, 𝑛 > 2, 𝑚 > 1

Output: and that minimize the empirical risk𝑤 ∈ 𝑅𝑚 𝑤
0

∈ 𝑅
𝑖=0

𝑛−1

∑ (𝑤𝑇𝑥
𝑖

+ 𝑤
0

− 𝑦
𝑖
)2

Algorithm:
1. Initialize w and w0 to random values between [-.01, .01]
2. Set learning rate η =. 01

3. Calculate obj =
𝑖=0

𝑛−1

∑ (𝑤𝑇𝑥
𝑖

+ 𝑤
0

− 𝑦
𝑖
)2

4. Set prev_obj = obj + 10
5. while(prev_obj - obj > .001):

a. Set prev_obj = obj
b. Perform the update 𝑤 = 𝑤 − η∇𝑓

𝑤

c. Perform the update 𝑤
0

= 𝑤
0

− η∇𝑓
𝑤

0

d. Recalculate objective obj =
𝑖=0

𝑛−1

∑ (𝑤𝑇𝑥
𝑖

+ 𝑤
0

− 𝑦
𝑖
)2

The key things to work out for this problem are the gradients. Can you calculate and say what
the gradient should be?

𝑑𝑓/𝑑𝑤
1

= 2
𝑖=0

𝑛−1

∑ (𝑤𝑇𝑥
𝑖

+ 𝑤
0

− 𝑦
𝑖
)𝑥

𝑖1

In general for the jth coordinate we have

𝑑𝑓/𝑑𝑤
𝑗

= 2
𝑖=0

𝑛−1

∑ (𝑤𝑇𝑥
𝑖

+ 𝑤
0

− 𝑦
𝑖
)𝑥

𝑖𝑗

Remember that ∇𝑓(𝑤) = (𝑑𝑓/𝑑𝑤
1
, 𝑑𝑓/𝑑𝑤

2
,..., 𝑑𝑓/𝑑𝑤

𝑚
)

𝑑𝑓/𝑑𝑤
0

= 2
𝑖=0

𝑛−1

∑ (𝑤𝑇𝑥
𝑖

+ 𝑤
0

− 𝑦
𝑖
)

So far it looks like least squares is a reasonable good strategy for linearly separable.

